ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration Kingspan Insulation B.V

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

EDD KOLOOOOOO LTA EN

Issue date 25/11/2022

Therma™ TR26 / Therma™ TT46 Kingspan Insulation B.V.

www.ibu-epd.com | https://epd-online.com

General Information

Therma™ TR26 / Therma™ TT46 Kingspan Insulation B.V. Programme holder Owner of the declaration IBU - Institut Bauen und Umwelt e.V. Kingspan Insulation B.V. Hegelplatz 1 Lorentzstraat 1 7102 JH Winterswijk 10117 Berlin The Netherlands Germany **Declaration number** Declared product / declared unit EPD-KSI-20220298-LT1-EN Therma™ TR26 / Therma™ TT46 $1m^2$, 120mm thickness, $R_D = 5,45 \text{ m}^2$.K/W This declaration is based on the product category rules: The insulation materials Therma™ TR26 and Insulating materials made of foam plastics, 01.2019 Therma™ TT46 are produced by Kingspan Insulation at the manufacturing facilities in Winterswijk (the (PCR checked and approved by the SVR) Netherlands), Burkhardtsdorf (Germany) and Kankaanpää (Finland). This EPD is based on weighted Issue date averages which have been determined on the basis of 25/11/2022 the single values originating from the different Kingspan Insulation factories. Valid to 24/11/2027 Therma™ TR26 Roof Board is an insulation board with a rigid thermoset polyisocyanurate (PIR) fibre free insulation core, faced on both sides with a low emissivity composite foil. Therma™ TR26 Roof Board is used as thermal insulation under mechanically fixed or non-fixed ballasted roofing systems. Therma™ TT46 Tapered Roof Board is an insulation board with a rigid thermoset PIR fibre free insulation core, faced on both sides with a low emissivity composite foil. Therma™ TT46 Tapered Roof Board is used as thermal insulation under mechanically fixed or non-fixed ballasted roofing systems and enhances water drainage from flat roofs. In order to enable the user of the EPD to calculate the LCA results for different thicknesses, the EPD contains the respective calculation rules. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as EN 15804. Verification Ham leten The standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025:2011 Dipl. Ing. Hans Peters (chairman of Institut Bauen und Umwelt e.V.) internally externally

Product

Dr. Alexander Röder

(Managing Director Institut Bauen und Umwelt e.V.))

Vito D'Incognito

(Independent verifier)

Product description/Product definition

Therma[™] TR26 and Therma[™] TT46 Roof Boards are insulation boards with a rigid thermoset polyisocyanurate (PIR) fibre free insulation core, faced on both sides with a low emissivity composite foil. The products are available in variable thicknesses from 20 mm up to 200 mm. This EPD is based on a thickness of 120 mm and R_D -value of 5,45 m²-K/W.

For the placing on the market of the product in the European Union/European Free Trade Association (EU/EFTA) (with the exception of Switzerland) Regulation (EU) No. 305/2011 (CPR) applies. The product needs a declaration of performance taking into consideration EN 13165 - Thermal insulation products for buildings - Factory made polyurethane foam (PU) products - specification and the CE-marking. For the application and use the respective national provisions apply.

Application

Therma™ TR26 Roof Board is used as thermal insulation under mechanically fixed or non-fixed ballasted roofing systems.

Therma™ TT46 Tapered Roof Board is used as thermal insulation under mechanically fixed or non-fixed ballasted roofing systems and enhances water drainage from flat roofs.

Technical Data

Constructional data

Name	Value	Unit
Thermal conductivity according to EN 13165	0.022	W/(m.K)
Reaction to fire according to EN 13165	Е	
Compressive strength according	CS(10\Y)	
to EN 13165	120/150	
Thickness tolerance according to EN 13165	T2-T3	

Performance data of the product in accordance with the declaration of performance with respect to its

essential characteristics according to *EN 13165* - Thermal insulation products for buildings - Factory made rigid polyurethane foam (PU) products - Specification

The declaration of performance of the product can be found at www.kingspan.com.

Base materials/Ancillary materials

The product contains approximately 3,3 kg/m² polyurethane rigid foam and 0,3 kg/m² multi-layer aluminium facings.

The main materials of the polyurethane foam are MDI (between 57-62 %), polyol (between 27-32 %) and a blowing agent (between 5-6 %). Due to the closed cell structure (conform *EN 13165*), the blowing agent remains in the foam. Water, flame retardants and additives are added (between 4-8 %).

In the current *REACH* regulations, polyurethane foam insulation products are considered "articles" and are exempt from the requirements of Articles 57 and 59(1) of *REACH Regulation (EC) No 1907/2006*. These products are not classified as "hazardous products" according to any current legislation, and can hence be declared as follows:

- This article contains substances listed in *the candidate list* (date: 31.08.2022) exceeding 0.1 percentage by mass: no.
- This article contains other carcinogenic, mutagenic, reprotoxic (CMR) substances in categories 1A or 1B which are not on *the candidate list*, exceeding 0.1 percentage by mass: no.
- Biocide products were added to this construction product or it has been treated with biocide products (this then concerns a treated product as defined by the (EU) *Biocidal Products Regulation No. 528/2012* (BPR): no.

Reference service life

The reference service life is not to be declared in this EPD as it does not cover the use stage.

LCA: Calculation rules

Declared Unit

The declared unit (1 m²) and conversion factors are listed in the table below.

Declared unit

Name	Value	Unit
Declared unit	1	m ²
Gross density	30	kg/m ³
Grammage	3.6	kg/m ²
Layer thickness	0.12	m
conversion factor [Mass/Declared Unit] (in kg/m²)	3.6	

This EPD is based on a weighted average of the annual production volume of three factories producing the products Therma™ TR26 and Therma™ TT46.

The scope of this EPD is the thermal insulation products Therma™ TR26 and Therma™ TT46 as produced by Kingspan Insulation at the manufacturing

facilities in Winterswijk (the Netherlands), Burkhardtsdorf (Germany) and Kankaanpää (Finland).

The environmental impacts have been calculated per plant over the calendar year 2021. Based on the one-year production volume of Therma™ TR26 and Therma™ TT46 per plant, the individual environmental impacts are weighted.

The products Therma™ TR26 and Therma™ TT46 are grouped because they have the same composition. The shape of both products differs, as the Therma™ TR26 is a flat product and the Therma™ TT46 is a tapered product. The EPD is studied for a common product thickness of 120 mm. Multiplication factors are included to calculate impacts for other product thicknesses within the range of 20 to 200 mm.

System boundary

The type of EPD according to *EN 15804* is: cradle to gate with options, modules C1–C4, and module D (A1–A3, C, D and additional modules: A4, A5).

The product stage is a mandatory information module and it covers:

- · A1, raw material extraction and processing, processing of secondary material input (e.g. recycling processes),
- · A2, transport to the manufacturer,
- · A3, manufacturing, including provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of-waste state or disposal of final residues during the product stage.

The construction process stage includes:

- · A4 transport to the building site;
- · A5 installation in the building including provision of all materials, products and energy, as well as waste processing up to the end-of waste state or disposal of final residues during the construction process stage.

The end-of-life stage is a mandatory information module and it covers:

- · C1 de-construction, demolition;
- · C2 transport to waste processing;
- · C3 waste processing for reuse, recovery and/or recycling:
- · C4 disposal (not applicable for this EPD) including provision and all transport, provision of all materials, products and related energy and water use.

Environmental burden of the incineration (R1 > 60 %) of the product at the end-of-life stage are assigned to the product system (C3); resulting potential credits for thermal and electrical energy from energy substitution are declared in module D.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

Background database

Background data from GaBi ts Version 10 is used with GaBi data sets CUP2022.1.

Factors for different thicknesses

The LCA results for the insulation material declared in this EPD refer to a product with a thickness of 120 mm. To enable the user of the EPD to calculate the results for different thicknesses the factors in the following table can be used for the calculation. The LCA results in chapter 5 have to be multiplied by these factors.

The scaling factors are applicable for the complete product, where the multi-layer aluminium facings are for all product thicknesses equal and the foam inputs are scaling upwards and downwards with other product thicknesses.

TR26/TT46		N	lodule A1 -	A3			Modul	es A4/A5/0	C1/C2/C3				Module D)	
1K20/1140	20mm	100mm	120mm	140mm	200mm	20mm	100mm	120mm	140mm	200mm	20mm	100mm	120mm	140mm	200mm
GWP - total	0.24	0.83	1.00	1.17	1.68	0.25	0.83	1.00	1.17	1.67	0.23	0.83	1.00	1.18	1.68
GWP - fossil	0.25	0.83	1.00	1.17	1.67	0.25	0.83	1.00	1.17	1.67	0.23	0.83	1.00	1.18	1.68
GWP - biogenic	0.82	0.96	1.00	1.04	1.16	0.25	0.83	1.00	1.17	1.67	0.21	0.82	1.00	1.18	1.70
GWP - Iuluc	0.24	0.83	1.00	1.17	1.68	0.25	0.83	1.00	1.17	1.67	0.26	0.84	1.00	1.17	1.66
ODP	0.30	0.86	1.00	1.15	1.58	0.25	0.83	1.00	1.17	1.67	0.19	0.82	1.00	1.19	1.72
AP	0.27	0.84	1.00	1.16	1.65	0.25	0.83	1.00	1.17	1.67	0.34	0.86	1.00	1.15	1.58
EP - freshwater	0.27	0.84	1.00	1.16	1.65	0.25	0.83	1.00	1.17	1.67	0.20	0.82	1.00	1.19	1.71
EP - marine	0.26	0.84	1.00	1.16	1.66	0.25	0.83	1.00	1.17	1.67	0.26	0.84	1.00	1.17	1.65
EP - terrestrial	0.26	0.84	1.00	1.16	1.66	0.25	0.83	1.00	1.17	1.67	0.26	0.84	1.00	1.17	1.65
POCP	0.24	0.83	1.00	1.17	1.66	0.25	0.83	1.00	1.17	1.67	0.27	0.84	1.00	1.17	1.65
ADPF	0.20	0.82	1.00	1.18	1.72	0.25	0.83	1.00	1.17	1.67	0.20	0.82	1.00	1.18	1.70
ADPE	0.23	0.83	1.00	1.17	1.68	0.25	0.83	1.00	1.17	1.67	0.22	0.83	1.00	1.18	1.69
WDP	0.23	0.83	1.00	1.17	1.69	0.25	0.83	1.00	1.17	1.67	0.25	0.83	1.00	1.17	1.66

LCA: Scenarios and additional technical information

Characteristic product properties Information on biogenic Carbon

The total mass of biogenic carbon containing materials is less than 5 % of the total mass of the product and accompanying packaging.

Technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment.

Manufacturing (A3)

A polyethylene packaging foil is used. The products are transported either on EPS skids or on wooden pallets.

Within Module A3 the following packaging of the final product is included:

- Polyethylene cover and wrap: 0,051 kg/m²
- Expanded Polystyrene skid: 0,031 kg/m²
- Wooden pallet: 0,003 kg/m²

Transport to the building site (A4)

Traineport to the ballang ofter		
Name	Value	Unit
Litres of fuel	0.0103	l/100km
Transport distance	100	km
Gross density of products transported	30	kg/m³

Installation into the building (A5)

Name	Value	Unit
Total output substances following		
waste treatment on-site packaging	0.085	kg
material		

The recycling of the packaging is considered in A5

End of life (C1-C4)

The assumptions for C1 are: diesel-driven excavator (100 kW; 0.2 litre fuel per ton excavated material). The assumptions for C2 are: Truck Euro 6, diesel driven, 26-28 t gross weight, assumed distance 50 km.

Name	Value	Unit
Collected as mixed construction waste	3.6	kg
Energy recovery	3.575	kg
Recycling (aluminium content of the multi-layer aluminium facings)	0.025	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Waste incineration with energy recuperation is assumed as an end-of-life scenario

LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR NOT
DECLARED: MNR = MODULE NOT RELEVANT)

PROI	PRODUCT STAGE CONSTRUCTI ON PROCESS STAGE							END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES				
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A 1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Х	Х	Х	Х	Х	ND	ND	MNR	MNR	MNR	ND	ND	Х	Х	Х	Х	Х

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 m² 120 mm Therma™ TR26 / Therma™ TT46

Core Indicator	Unit	A1-A3	A4	A5	C1	C2	СЗ	C4	D
GWP-total	[kg CO ₂ -Eq.]	1.01E+1	3.03E-2	2.16E-1	2.31E-3	1.51E-2	7.79E+0	0.00E+0	-3.21E+0
GWP-fossil	[kg CO ₂ -Eq.]	1.03E+1	3.01E-2	2.16E-1	2.30E-3	1.51E-2	7.63E+0	0.00E+0	-3.19E+0
GWP-biogenic	[kg CO ₂ -Eq.]	-2.35E-1	-4.16E-5	1.18E-5	3.08E-6	-2.08E-5	1.66E-1	0.00E+0	-1.59E-2
GWP-luluc	[kg CO ₂ -Eq.]	6.70E-3	1.68E-4	2.57E-6	2.84E-8	8.40E-5	1.43E-5	0.00E+0	-3.65E-4
ODP	[kg CFC11-Eq.]	2.82E-11	1.81E-15	3.85E-14	1.41E-16	9.03E-16	5.77E-13	0.00E+0	-2.05E-11
AP	[mol H+-Eq.]	2.18E-2	3.11E-5	2.70E-5	1.07E-5	1.55E-5	4.55E-3	0.00E+0	-4.91E-3
EP-freshwater	[kg P-Eq.]	4.66E-5	9.00E-8	9.73E-9	4.65E-10	4.50E-8	1.56E-7	0.00E+0	-4.22E-6
EP-marine	[kg N-Eq.]	5.60E-3	1.02E-5	7.23E-6	5.10E-6	5.08E-6	2.20E-3	0.00E+0	-1.19E-3
EP-terrestrial	[mol N-Eq.]	5.78E-2	1.21E-4	1.23E-4	5.58E-5	6.05E-5	2.53E-2	0.00E+0	-1.27E-2
POCP	[kg NMVOC-Eq.]	2.77E-2	2.74E-5	2.08E-5	1.45E-5	1.37E-5	5.64E-3	0.00E+0	-3.35E-3
ADPE	[kg Sb-Eq.]	1.14E-5	2.52E-9	9.40E-10	9.43E-11	1.26E-9	1.58E-8	0.00E+0	-4.68E-7
ADPF	[MJ]	2.67E+2	4.03E-1	7.99E-2	3.12E-2	2.01E-1	2.02E+0	0.00E+0	-5.35E+1
WDP	[m³ world-Eq deprived]	1.56E+0	2.70E-4	2.05E-2	4.28E-6	1.35E-4	7.72E-1	0.00E+0	-3.51E-1

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Caption Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 m² 120 mm Therma™ TR26 / Therma™ TT46

Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
PERE	[MJ]	2.88E+1	2.29E-2	2.05E-2	1.18E-4	1.15E-2	3.54E-1	0.00E+0	-1.52E+1
PERM	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
PERT	[MJ]	2.88E+1	2.29E-2	2.05E-2	1.18E-4	1.15E-2	3.54E-1	0.00E+0	-1.52E+1
PENRE	[MJ]	1.52E+2	4.04E-1	3.70E+0	3.12E-2	2.02E-1	1.14E+2	0.00E+0	-5.35E+1
PENRM	[MJ]	1.15E+2	0.00E+0	-3.62E+0	0.00E+0	0.00E+0	-1.12E+2	0.00E+0	0.00E+0
PENRT	[MJ]	2.68E+2	4.04E-1	7.99E-2	3.12E-2	2.02E-1	2.02E+0	0.00E+0	-5.35E+1
SM	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
RSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
NRSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
FW	[m³]	7.19E-2	2.59E-5	4.87E-4	1.78E-7	1.30E-5	1.82E-2	0.00E+0	-1.64E-2

Caption

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 m² 120 mm Therma™ TR26 / Therma™ TT46

Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
HWD	[kg]	1.12E-7	1.93E-12	6.65E-12	1.03E-13	9.67E-13	2.76E-10	0.00E+0	-6.62E-9
NHWD	[kg]	2.85E-1	5.79E-5	1.94E-2	2.92E-6	2.89E-5	4.37E-2	0.00E+0	-8.04E-2
RWD	[kg]	2.94E-3	4.97E-7	3.32E-6	3.42E-8	2.49E-7	8.40E-5	0.00E+0	-4.19E-3
CRU	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
MFR	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	2.54E-2	0.00E+0	0.00E+0
MER	[kg]	0.00E+0	0.00E+0	8.66E-2	0.00E+0	0.00E+0	3.46E+0	0.00E+0	0.00E+0
EEE	[MJ]	0.00E+0	0.00E+0	3.93E-1	0.00E+0	0.00E+0	1.32E+1	0.00E+0	0.00E+0
EET	[MJ]	0.00E+0	0.00E+0	7.03E-1	0.00E+0	0.00E+0	2.36E+1	0.00E+0	0.00E+0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components
Caption for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported
thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 m² 120 mm Therma™ TR26 / Therma™ TT46

Indicator	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
PM	[Disease Incidence]	1.83E-7	1.79E-10	3.29E-10	1.21E-10	8.97E-11	1.27E-8	0.00E+0	-4.27E-8
IRP	[kBq U235- Eq.]	3.52E-1	7.29E-5	4.56E-4	4.98E-6	3.64E-5	1.35E-2	0.00E+0	-7.15E-1
ETP-fw	[CTUe]	1.09E+2	2.80E-1	5.72E-2	2.17E-2	1.40E-1	6.96E-1	0.00E+0	-1.21E+1
HTP-c	[CTUh]	7.21E-9	5.64E-12	3.20E-12	4.01E-13	2.82E-12	5.21E-11	0.00E+0	-6.30E-10
HTP-nc	[CTUh]	6.13E-7	2.93E-10	3.24E-10	2.03E-11	1.46E-10	1.90E-9	0.00E+0	-2.22E-8
SQP	[-]	6.43E+1	1.39E-1	2.04E-2	8.60E-5	6.93E-2	4.26E-1	0.00E+0	-9.22E+0

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential Caption comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 – for the indicator "Potential Human exposure efficiency relative to U235". This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure or to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators "abiotic depletion potential for non-fossil resources", "abiotic depletion potential for fossil resources", "water (user) deprivation potential, deprivation-weighted water consumption", "potential comparative toxic unit for ecosystems", "potential comparative toxic unit for humans – cancerogenic", "Potential comparative toxic unit for humans – not cancerogenic", "potential soil quality index". The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high as there is limited experienced with the indicator.

References

Biocidal Products Regulation No. 528/2012 (BPR)

Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products

CPR

Regulation (EU) No. 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised condition for the marketing of construction products and repealing Council Directive 89/106/EC

EN 13165

EN 13165:2012+A2:2016: Thermal insulation products for buildings. Factory made polyurethane foam (PU) products. Specification

EN 15804

EN 15804:2012+A2:2019+AC:2021, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

GaBi ts

thinkstep AG: Leinfelden-Echterdingen GaBi Software-System and Database for Life Cycle Engineering 1992-2019

IBU 2021

Institut Bauen und Umwelt e.V.: General Instructions for the EPD programme of Institut Bauen und Umwelt e.V., Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021 www.ibu-epd.com

ISO 14025

EN ISO 14025:2011, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

LCA-tool

Kingspan LCA tool, version 1.1. IBU-KSI-202001-LT1-EN.

Developed by Sphera Solutions GmbH (formely Thinkstep GmbH)

PCR Version 1.7, Part A

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Building-Related Products and services, Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Report according to EN 15804+A2:2019

November 2021

PCR 2017, Part B

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part B: Requirements on the EPD for insulating materials made of foam plastics. January 2019

REACH

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

https://echa.europa.eu/candidate-list-table; accessed 19th of January 2021, 211 substances listed.

Institut Bauen und Umwelt eV.	Publisher Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@ibu-epd.com www.ibu-epd.com
Institut Bauen und Umwelt eV.	Programme holder Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 - 3087748 - 29 info@ibu-epd.com www.ibu-epd.com
Kingspan.	Author of the Life Cycle Assessment Kingspan Insulation B.V. Lingewei 8 4004LL Tiel Netherlands	Tel Fax Mail Web	+31 (0) 543 543 210 +31 (0) 344 675 251 info@kingspaninsulation.nl www.kingspan.com
Kingspan	Owner of the Declaration Kingspan Insulation B.V. Lingewei 8 4004LL Tiel Netherlands	Tel Fax Mail Web	+31 (0) 543 543 210 +31 (0) 344 675 251 info@kingspaninsulation.nl www.kingspan.com